Introduction

In data processing, it's common to find date fields as strings. Converting these string representations into proper date formats is crucial for accurate data analysis and processing. In this tutorial, we will explore how to convert a string to a date column in a PySpark DataFrame.

Import Libraries

First, we import the following python modules:

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, to_date

Create SparkSession

Before we can work with Pyspark, we need to create a SparkSession. A SparkSession is the entry point into all functionalities of Spark.

In order to create a basic SparkSession programmatically, we use the following command:

spark = SparkSession \
    .builder \
    .appName("Python PySpark Example") \
    .getOrCreate()

Create PySpark DataFrame

Next, we create an example PySpark DataFrame based on a list. To do this, we use the createDataFrame() method of PySpark.

column_names = ["language", "framework", "users", "date"]
data = [
    ("Python", "Django", 20000, "2025/01/01"),
    ("Python", "FastAPI", 9000, "2023/02/04"),
    ("Java", "Spring", 7000, "2024/03/26"),
    ("JavaScript", "ReactJS", 5000, "2025/04/01")
]
df = spark.createDataFrame(data, column_names)
df.show()

Output:

+----------+---------+-----+----------+
|  language|framework|users|      date|
+----------+---------+-----+----------+
|    Python|   Django|20000|2025/01/01|
|    Python|  FastAPI| 9000|2023/02/04|
|      Java|   Spring| 7000|2024/03/26|
|JavaScript|  ReactJS| 5000|2025/04/01|
+----------+---------+-----+----------+

Convert String to Date

To convert the date column from string format to date format, we can use the to_date() function of PySpark:

You can view this post with the tier: Academy Membership

Join academy now to read the post and get access to the full library of premium posts for academy members only.

Join Academy Already have an account? Sign In